If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100-4.9t^2=0
a = -4.9; b = 0; c = +100;
Δ = b2-4ac
Δ = 02-4·(-4.9)·100
Δ = 1960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1960}=\sqrt{4*490}=\sqrt{4}*\sqrt{490}=2\sqrt{490}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{490}}{2*-4.9}=\frac{0-2\sqrt{490}}{-9.8} =-\frac{2\sqrt{490}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{490}}{2*-4.9}=\frac{0+2\sqrt{490}}{-9.8} =\frac{2\sqrt{490}}{-9.8} $
| x-160=-30 | | x^2-x+58=0 | | x+79+x-13+x=180 | | 4.5/x=9/16 | | {y}{2}+22=38 | | 15+8x=57 | | x−12=26 | | 5x9=65 | | t-698=-195 | | 7=x/9+3 | | n-162=298 | | X^2+4x-40=8 | | -2x-4x-28=15x-13 | | 24b=240 | | 3x+8=7.2+5x | | x+.5x=750 | | n+36=63 | | 8n-3=67 | | b(b+3)=-12 | | 456=-19y | | F(n)=9(2)n-1 | | t+203=762 | | 11x-17=-9x-11 | | 4c-7+5=24 | | 2(4x+1)=6x-10 | | v+406=-389 | | -4+x=10 | | y+-3=30 | | n-54=117 | | 9c=-459 | | 7n-9=82 | | p^2+8p-128=0 |